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The problem of designing a plate with a given set of rigidities using a minimum number of layers, which, as
it has been established, is equal to four, has been considered. We consider the cases where flexural rigidities,
rigidities in the plate plane, and asymmetric rigidities and where only longitudinal and flexural rigidities,
which are the physical characteristics of the plane, are given. It has been proved that in both cases the
ranges of longitudinal and flexural rigidities are equal (thus the question of the role of asymmetric rigidities
is solved).

The problem of designing laminated plates with a given set of rigidities has been considered by many authors,
e.g., in [1–4]. In most works it was a problem of optimization of rigidity, weight, etc. The present paper considers the
problem of designing a plate with a given set of rigidities. Primary consideration is given to the determination of the
minimum number of materials and layers. Earlier, a similar problem was solved for the cases where the Young modu-
lus of layers took on any values from the interval [E∗, E∗] [4] or where the plate was formed from N layers of equal
thickness [5]. The former is mainly of theoretical interest, since in reality it is impossible to dispose of an infinite set
of materials. The second problem is quite practical; with a number of layers N D 10 it can be solved on a computer
in a reasonable time (in a few minutes) [5]; however, at N D 100 it becomes essentially unsolvable.

Let us consider a laminated plate (Fig. 1). At coinciding Poisson coefficients ν of the materials of the layers
(which takes place in many cases) the rigidities of the plate Dijkl

µ  (i, j, k, l = 1, 2) are expressed in terms of integrals
(function E(y) moments):

Iµ (E) = ∫ 
−1 ⁄ 2

1 ⁄ 2

 y
µ
E (y) dy ,   µ = 0, 1, 2 .

The function E(y) has the meaning of the Young modulus of the material, y being the coordinate across the plate. The
plate rigidities are expressed in terms of intervals Iµ(E) (µ = 0, 1, 2) by the formulas [6]

D1111
µ

 = D2222
µ

 = 
h

µ+1

1 − ν2
 Iµ (E) ,

D1122
µ

 = D2211
µ

 = 
νh

µ+1

1 − ν2 Iµ (E) ,

D1212
µ

 = D2121
µ

 = 
h

µ+1

1 + ν
 Iµ (E) .

(1)

Here Dijkl
0  denotes the rigidities in the plane of the plate; Dijkl

1  denotes asymmetric rigidities, and Dijkl
2  — flexural ri-

gidities. Thus, the solution of the problem of designing a plate with given rigidities is equivalent to the solution of the
problem on assigning given values a, b, c to three intervals (moments Iµ(E) (µ = 0, 1, 2) of the function E(y).
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In [4], the solution of the design problem was obtained on a set of functions UE = 


(y)



, where E(y) takes on

any values from the interval [E∗, E∗]. This means that materials with any Young moduli from the interval [E∗, E∗] are
available to the designer. It was found that the solution of the problem

  ∫ 

−1 ⁄ 2

1 ⁄ 2

 E (y) dy = a , (2)

  ∫ 

−1 ⁄ 2

1 ⁄ 2

 yE (y) dy → min1
 ⁄ max1

has the form of a function formed from two steps (the first solution corresponds to the minimization problem, the sec-
ond one — to the maximization problem):

E (y) = 



E

∗
 ,

E∗ ,
     

− 1 ⁄ 2 ≤ y ≤ λ ;

λ ≤ y ≤ 1 ⁄ 2 ;
     E (y) = 





E∗ ,

E
∗
 ,
     

− 1 ⁄ 2 ≤ y ≤ λ ;

λ ≤ y ≤ 1 ⁄ 2 ,
(3)

where –1/2 ≤ λ ≤ 1/2. The solution of the problem

  ∫ 

−1 ⁄ 2

1 ⁄ 2

 E (y) dy = a ,     ∫ 

−1 ⁄ 2

1 ⁄ 2

 yE (y) dy = b , (4)

  ∫ 

−1 ⁄ 2

1 ⁄ 2

 y
2
E (y) dy → min2

 ⁄ max2

has the form of a step function (the first solution corresponds to the minimization problem, the second one — to the
maximization problem):

E (y) = 











E∗ ,

E
∗
 ,

E∗ ,
     

− 1 ⁄ 2 ≤ y ≤ λ1 ;

λ1 ≤ y < λ2 ;

λ2 ≤ y ≤ 1 ⁄ 2 ;

     E (y) = 











E
∗
 ,

E∗ ,

E
∗
 ,

     

− 1 ⁄ 2 ≤ y < λ1 ;

λ1 ≤ y < λ2 ,

λ2 ≤ y ≤ 1 ⁄ 2 ,

(5)

where –1/2 ≤ λ1 ≤ λ2 ≤ 1/2. We shall use further problems (2) and (4) and their solutions (3) and (5).
The designer practically has at his disposal a finite (discrete) set of materials for creating a plate. Therefore,

in practical problems E(y) assumes a discrete set of values E∗ = E1, E2, ..., En = E∗, and the problem should be con-
sidered on the set of step functions

Fig. 1. Diagram of the laminated plate.

1013



D = 



E (y) :   E (y) 8 




E∗ = E1, E2, ..., En = E

∗






 . (6)

To solve it, one has to know:
a) what values the integrals Iµ(E) (µ = 0, 1, 2) can take on set (6);
b) how to plot the function assigning to the integrals Iµ(E) the given values of a, b, c (provided that a, b, c

belong to the set of possible values of the integrals).
Further we shall need a set of step functions assuming only two values from the interval [E∗, E∗] — the larg-

est and the least ones:

D∗
∗
 = 




E (y) :  E (y) 8 




E∗, E

∗






 .

Apparently, D∗
∗ ½ D ½ UE.

Possible Values of Plate Rigidities. Let us determine the possible values of integrals Iµ(E) (µ = 0, 1, 2) on
the sets UE, D, and D∗

∗. The reference point for analysis is the fact that solutions (3) and (5) belong to D∗
∗. This fact,

which was not used before, enables one to make great progress in solving the problem of designing laminated plates.

Apparently, the largest and the least values of the integral I0(E) on the sets UE, D, and D∗
∗ coincide and are

equal to E∗ and E∗. Let us show that on the set D∗
∗ the integral I0(E) takes all intermediate values between E∗ and

E∗. Let us consider a step function of the form (3) belonging to D∗
∗. As the parameter λ is changed from −1

2
 to 

1
2

,

the value of the integral I0(E) varies continuously from E∗ to E∗. Then the solution of the problem

I0 (E) = a (E∗ ≤ a ≤ E
∗) , (7)

I1 (E) → max1
 ⁄ min1 , (8)

E 8 UE (9)

is function (3) belonging to the set D∗
∗, i.e., the maximum and the minimum of I1(E) on UE, D, and D∗

∗ are the same.
Let us show that I1(E) takes all intermediate values between max1 and min1 for the functions from D∗

∗ on condition
(7). In [4], the minimum and maximum values for the integral I1(E) on condition (7) were calculated for E 8 UE:

min1 = − 
(E∗

 − a) (a − E∗)

2 (E∗
 − E∗)

 ,   max1 = 
(E∗

 − a) (a − E∗)

2 (E∗
 − E∗)

 .

It is impossible to plot the function from D∗
∗ on which the integral takes all intermediate values with the use

of the technique from [4]. Let us use another method. Let us introduce a function continuously depending on the pa-
rameter and going, upon its change, from the first function (3) into the second one. This transformation should not
withdraw the functions from the set D∗

∗ (i.e., the possible values assumed by the function, that is, E∗ and E∗) and for
all values of the parameter condition (7) should be fulfilled.

Consider the following function E(y) continuously depending on the parameter λ:

E (y) = 















E∗ ,   − 1 ⁄ 2 ≤ y < λ ;

E
∗
 ,   λ ≤ y < λ + 

a − E∗

E
∗
 − E∗

 ;

E∗ ,   λ + 
a − E∗

E
∗
 − E∗

 ≤ y ≤ 1 ⁄ 2 .

(10)
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At λ = −1
2

, function (10) coincides with the first function in (3), and at λ = 
1

2
 − 

a − E∗

E∗ − E∗
 it coincides with the second

function. The integral I0(E) of function (10) is equal to a for all λ 8 



−

1

2
, 

1

2
 − 

a − E∗

E∗ − E∗




. The integral I1(E) of (10) is a

continuous function of the variable λ and varies from min1 to max1.

Consider the problem

I0 (E) = a , (11)

I1 (E) = b , (12)

I2 (E) → max2
 ⁄ min2 , (13)

E 8 U , (14)

whose solution has the form of function (5) belonging to the set D∗
∗, i.e., the maximum and the minimum in problem

(11)–(14) on UE, D, and D∗
∗ are the same.

Because of the misprint in [2, 4] in the formulas for max2 and min2, let us make calculations of the maxi-
mum and minimum values of the integral I2(E). The minimum of I2(E) is attained on the first function from (5). In
so doing, λ1 and λ2 should be chosen so that conditions (11) and (12) are fulfilled. For the first function from (5),
equalities (11) and (12) take on the form

E∗ + (λ2 − λ1) (E∗
 − E∗) = a , (15)

(E∗
 − E∗) 

λ2
2
 − λ1

2

2
 = b . (16)

Solving system (15), (16), we find

λ1 = 
b

a − E∗

 − 
a − E∗

2 (E∗
 − E∗)

 ,   λ2 = 
b

a − E∗

 + 
a − E∗

2 (E∗
 − E∗)

 .

Then

I2 (E) = min2 = 
E∗

12
 + 

b
2

a − E∗

 + 
(a − E∗)3

12 (E∗
 − E∗)2

 .

The maximum of I2(E) is attained on the second function from (5), and λ1 and λ2 thereby should be chosen
so that conditions (11) and (12) are fulfilled for all λ1 and λ2. The conditions above for the second function from (5)
take on the form

E∗ + (E∗
 − E∗) (λ1 + 1 − λ2) = a , (17)

(E∗
 − E∗) 

λ1
2
 − λ2

2

2
 = b . (18)
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The solution of system (17), (18) yields

λ1 = 
b

a − E
∗ + 

a − E
∗

2 (E∗
 − E∗)

 ,   λ2 = 
b

a − E
∗
 − 

a − E
∗

2 (E∗
 − E∗)

 ,

I2 (E) = max2 = 
E

∗

12
 − 

b
2

E
∗
 − a

 − 
(E∗

 − a)3

12 (E∗
 − E∗)2

 .

Let us show that I2(E) takes all intermediate values between max2 and min2 for the functions from the set
D∗

∗. It is also impossible to use for this the technique from [4], and we shall again use the method described above.
We shall indicate the transformation which is continuously dependent on the parameters and transfers the first function
from (5) into the second one and at the same time does not withdraw the function from the set D∗

∗ and ensures the
fulfillment of equalities (11), (12) for all parameter values.

Consider the step function

E (y) = 















E∗ ,   − 1 ⁄ 2 ≤ y < λ1 ;

E
∗
 ,       λ1 ≤ y < λ2 ;

E∗ ,       λ2 ≤ y < λ3 ;

E
∗
 ,       λ3 ≤ y < λ4 ;

E∗ ,       λ4 ≤ y ≤ 1 ⁄ 2 ,

(19)

where −1
2

 < λ1 ≤ λ2 ≤ λ3 ≤ λ < 
1
2

.
Let us see that at a proper choice of parameters λ1, λ2, λ3, and λ4 the transform of (19) has the required

properties. For function (19), equalities (11) and (12) are written as

(λ2 − λ1) (E∗
 − E∗) + (λ4 − λ3) (E∗

 − E∗) + E∗ = a , (20)

(E∗
 − E∗) (λ2 − λ1) 

λ2 + λ1

2
 + (E∗

 − E∗) (λ4 − λ3) 
λ4 + λ3

2
 = b . (21)

Fig. 2. Step function E(y) and its corresponding design of the laminated plate
(plate-thickness distribution of two materials).
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It is convenient to write equalities (20), (21) in variables L1 = λ2 − λ1, L2 = λ4 − λ3 having the meaning of
the width of "high" steps (steps where the function takes the value of E∗ are called "high" steps (Fig. 2)) and variables

x1 = 
λ2 + λ1

2
 ,   x2 = 

λ4 + λ3

2
 , (22)

corresponding to the coordinates of the middle of the steps. In these variables, Eqs. (2) and (21) have the form

(E∗
 − E∗) (L1 + L2) + E∗ = a , (23)

(E∗
 − E∗) (L1x1 + L2x2) = b . (24)

Hence, for L1 and L2 we obtain

L1 = 
b − x2 (a − E∗)

(E∗
 − E∗) (x1 − x2)

 ,   L2 = 
x1 (a − E∗) − b

(E∗
 − E∗) (x1 − x2)

 . (25)

The condition λ1 < λ2 < λ3 < λ4 is equivalent to the set of conditions

x2 − x1 ≥ 
L1 + L2

2
 ,   L1 > 0 ,   L2 > 0 , (26)

which are fulfilled if the middles of the "high" steps x1 and x2 of (22) are no less than half of their length (L1/2 and

L2/2) away from the middle of the "high" step xm defined by the first formula of (5). The second function in (5) con-

tains two "high" steps. Let us take their middles x10 and x20 as the initial values of x1 and x2, respectively. As x1 is

varied from x10 to xm − 
L1

2
 and x2 from x10 to xm + 

L2

2
, the second function from (5) continuously transforms to the

first one. In so doing, they will leave the set D∗
∗ and conditions (11) and (12) will be met, and the integral I2(E) will

take on all intermediate values between max1 and min1. In the case under consideration, the transform depends on two

variables x1 and x2, which we will subsequently take into account.

Way of Finding a Design of a Plate with Given Rigidities. To design a plate with given characteristics, one
has to solve the problem

I0 (E) = a ,   I1 (E) = b ,   I2 (E) = c (27)

for the integrand E(y).
Above, the conditions of solvability of (27) have been established: the quantities a, b, c can take on the fol-

lowing values:

E∗ ≤ a ≤ E
∗
 ,

− 
(E∗

 − a) (a − E∗)

2 (E∗
 − E∗)

 ≤ b ≤ 
(E∗

 − a) (a − E∗)

2 (E∗
 − E∗)

 ,

E∗

12
 + 

b
2

a − E∗
 + 

(a − E∗)3

12 (E∗
 − E∗)2

 ≤ c ≤ 
E

∗

12
 − 

b
2

E
∗
 − a

 − 
(E∗

 − a)3

12 (E∗
 − E∗)2

 .

(28)

The above computations make it possible not only to obtain the possible values of rigidities but also to find
a design of a plate with given rigidities provided that the rigidities satisfy conditions (28).
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There exist an infinitely large number of solutions to the design problem. We are interested in the simplest
solutions. In estimating the integral I2(E), we formed function (19) with five steps. And I2(E) thereby is a function of
two variables, x1 and x2. So, in using (25) the first two equations in (27) are directly satisfied, and the third equation
takes the form of the algebraic equation I2(x1, x2) = c, where I2(x1, x2) is an analytically given function (i.e., it is
given by a known formula). This algebraic equation can be solved numerically, which will permit obtaining a design
of the plate.

Simplest Design of a Plate with Given Rigidities. By the simplest design is meant a design containing the
minimum number of layers. Let us show that in the proposed method for obtaining designs from five layers, the num-
ber of layers can be reduced to four. To this end, let one variable in the function I2(x1, x2) remain free and choose
the other so as to reduce the number of steps of the function E(y) (the number of layers). Let us seek the solution in
the form

E (y) = 













E
∗
 ,   − 1 ⁄ 2 ≤ y < A ,

E∗ ,       A ≤ y < B ,

E
∗
 ,       B ≤ y < 1 ⁄ 2 − δ ,

E∗ ,       1 ⁄ 2 − δ ≤ y ≤ 1 ⁄ 2 ,

(29)

where δ is a variable. In this case, the leftmost step continuously adjoins the left end of the interval 


−1

2
, 

1
2




 (Fig. 2).

The condition that the left "high" step at all δ adjoins the edge of y = –
1
2

 is written as follows: x1 = –
1
2

 + 
L1

2
, where

L1 is determined by formula (22).

The integrals I0(E) and I1(E) for function (29) can be written in a form analogous to (23), (24):

I0 (E) = E∗ + (E∗
 − E∗) (L1 + L2) ,

I1 (E) = (E∗
 − E∗) (x1L1 + x2L2) .

Then the equations I0(E) = a and I1(E) = b from (27) will take on the form

L1 + L2 = 
a − E∗

E
∗
 − E∗

 ,   x1L1 + x2L2 = 
b

E
∗
 − E∗

 .

Here L1 and L2 are the widths and x1 and x2 are the "middles" of the high steps (Fig. 2).
Let us express the quantities x1, x2, L1, and L2 in terms of the new variable δ:

x1 = x1 (δ) = 
L1 (δ)

2
 − 

1

2
 ,

x2 = x2 (δ) = 
1

2
 − δ2

 − 
L2 (δ)

2
 , (30)

L1 = L1 (δ) = 

b

E
∗
 − E∗

 − 
M

2
 + 

M
2

2
 + Mδ

M + δ − 1
 ,

L2 = L2 (δ) = 
a − E∗

E
∗
 − E∗

 − L1 (δ) ,
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where M = 
a − E∗

E∗ − E∗
.

The integral I2(E) is expressed in terms of the above quantities as follows:

I2 (δ) = 
E∗
12

 + (E∗
 − E∗) L1 (δ) 




x1

2
 (δ) + 

L1
2
 (δ)

12




 + (E∗

 − E∗) L2 (δ) 



x2

2
 (δ) + 

L2
2
 (δ)

12




 .

For the function E(y) determined by (29), in choosing L1, L2 and x1, x2 according to (30), two conditions
have been fulfilled: I0(E) = a, I1(E) = b. It only remains to fulfill the third condition of (27), I2(E) = c, which in the
case under consideration takes on the form of the equation with one unknown

I2 (δ) = c . (31)

Solving approximately Eq. (31) for δ with a given accuracy and using formulas (30), we obtain the design of
a plate with given rigidities formed from two materials and containing two layers.

Let us exemplify the solution of the design problem. Let us use ten materials with Young moduli (1, ...,
10)⋅1010 Pa and a Poisson coefficient ν = 0.3. These values correspond to soft metals, ceramics, and rigid plastics. It is
required to design a plate of thickness h = 10−2 m and a longitudinal rigidity S1111

0  = 4⋅108, a zero asymmetric rigidity,
and a flexural rigidity S2222

0  = 1⋅104. Estimates (28) permit choosing pairs of materials suitable for making a plate. In
the given case, we have the following pairs of materials (the numbers of materials to which there correspond the values
of the Young moduli (1, ..., 10)⋅1010 Pa are given): (1, 9), (1, 10), (2, 9), (2, 10), (3, 9), (3, 10), (4, 9), (4, 10), (5, 10),
and (6, 10). For each pair of materials, the simplest design of a plate with given rigidities has been obtained. Two of
them are given in Tables 1 and 2 (the design presented on the last line consists of only three layers).

Physical Rigidities and Rigidities in an Arbitrary Coordinate System. Design of a Plate with Given
Physical Rigidities. Calculating rigidities in an arbitrary coordinate system, we obtain longitudinal and flexural rigidi-
ties and, in the general case, nonzero asymmetric rigidities. In practice, a plate is characterized by only longitudinal
and flexural rigidities. Let us denote them as D0 and D2 and call them physical rigidities. They differ by the factors
depending on the Poisson coefficient (see formulas (1)). Here by D0 and D2 are meant rigidities with index 1111 in
(1). Asymmetric rigidity is not a physical characteristic of the plate and is associated with an arbitrary choice of the
coordinate system. Rigidities D0 and D2 are calculated in a coordinate system, in which symmetric rigidities are equal
to zero. At a given structure of the plate, such a coordinate system can be found [7, 8] (for a laminated plate this is
fairly easy to do). In the design problem, however, the structure of the plate is, in principle, not known in advance
(and it is determined). Therefore, the coordinate system in which the symmetric rigidities are equal to zero is not
known in the design problems.

The physical rigidities D0 and D2 are expressed in terms of the values of I0(E), I1(E), and I2(E) as follows [6]:

D0 = hI0 (E) , (32)

TABLE 1. Designs of Plates in Terms of Quantities L1, L2, x1, and x2

Pair of materials L1 L2 x1 x2

(1, 9) 0.378 0.407 –0.311 0.289

(6, 10) 0.160 0.160 –0.420 0.420

TABLE 2. Designs of Plates in Terms of Quantities h1, h2, h3, and h4

Pair of materials h1 h2 h3 h4

(1, 9) 0.377 0.208 0.407 0.008

(6, 10) 0.160 0.860 0.160 0
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D2 = h
3
 



I2 (E) − 

I1
2
 (E)

I0 (E)




 . (33)

The possible values of D0 are obvious: E∗h ≤D0 ≤ E∗h. Let us find what values can the flexural rigidity assume D2
(33). Transform expression (33):

D2

h
3  = I2 (E) − 

I1
2
 (E)

I0 (E)
 . (34)

Let us introduce, for brevity, the notations I0(E) = x, I1(E) = y, and I2(E) = z. Taking them into account, the set of
possible values of integrals I0(E), I1(E), and I2(E) (see [28]) is written as

E∗ ≤ x ≤ E
∗
 ,   − j (x) ≤ y ≤ j (x) ,   I∗ (x, y) ≤ z ≤ I

∗
 (x, y) , (35)

where j(x), I∗(x, y), I∗(x, y) are known functions (namely the functions from (27) and (28)). Then equality (34) will
take the form

D2

h
3  = z − 

y
2

x
 .

Let us analyze the expression D2
 ⁄ h3 for the maximum and minimum on set (35). Note that for the plate with a zero

asymmetric rigidity y = 0. It may be expected that the range of D2
 ⁄ h3 values on the set of functions (35) is wider

than the set of values of the variable z. Let us show that in the given case this is not so. Fix the variable x, assuming
x = x0. Then

− j (x0) ≤ y ≤ j (x0) ,   I∗ (x0, y) ≤ z ≤ I
∗
 (x0, y) ,   

D2

h
3

 = z − 
y

2

x0

 .

Find max 




D2

h3



. Taking into account that, at given (x0, y), max x = I∗(x0, y), we get

max 
D2

h
3  = max 







I
∗
 (x0, y) − 

y
2

x0







 .

Substituting the expression for I∗(x0, y) obtained in view of (27), (28) and the introduced change of variables, we get

max 
D2

h
3

 = max 

















E
∗

12
 − 

(E∗
 − x0)3

12 (E∗
 − E∗)2







 − y

2
 




1

E
∗
 − x0

 + 
1

x0














 .

Since 
1

E∗ − x0

 + 
1

x0
 > 0 (according to (35), E∗ − x0 ≥ 0), the maximum value of D2

 ⁄ h3 is attained at y = 0. Let us find

min 




D2

h3



 at fixed x = x0 (at given (x0, y) min z = I∗(x0, y)):

min 
D2

h
3

 = min 






I∗ (x0, y) − 

y
2

x0







 .
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Substitution of the expression from (28) for I∗(x0, y) yields

min 
D2

h
3

 = min 


















E∗

12
 + 

(x0 − E∗)3

12 (E∗
 − E∗)2







 + y

2
 




1

x0 − E∗
 − 

1

x0














 .

Since 
1

x0 − E∗
 − 

1

x0
 > 0 (according to (35), x0 − E∗ ≥ 0), the minimum value of D2

 ⁄ h3 is attained at y = 0.

As a result, we obtain that the minimum and maximum values of the expression D2
 ⁄ h3 are attained at y = 0,

i.e., in the accepted designations this is the condition I1(E) = 0 (the condition that the asymmetric rigidity of the plate
is equal to zero). Thus, the possible values of the physical rigidities D0 and D2 coincide with the possible values of
the integrals I0(E) and I2(E) at b = 0. Then, with account for the introduced designations, for the integrals Iµ(E), µ =
0, 1, 2, we obtain that the physical rigidities D0 and D2 can take only the following values:

h

1 − ν2
 E∗ ≤ D0 ≤ 

h

1 − ν2 E
∗
 ,

(36)

h
3

1 − ν2
 







E∗

12
 + 

(a − E∗)3

12 (E∗
 − E∗)2







 ≤ D2 ≤ 

h
3

1 − ν2
 







E
∗

12
 − 

(E∗
 − a)3

12 (E∗
 − E∗)2







 .

Formula (36) has been written for rigidities with indices 1111; for other indices one has to replace the factor 
1

1 − ν2
by the corresponding quantity.

The value of the integral I1(E) does not influence the possible values of the physical rigidities D0 and D2.
Then I1(E) (having the meaning of asymmetric rigidity) can be assumed to be equal to zero and the design problem
can be formulated as

I0 (E) = D0 ,   I1 (E) = 0 ,   I2 (E) = D2 (37)

without restricting the generality.
Problem (37) is solvable when conditions (36) are met and has the simplest ("four-step") solution. The range

of possible values of a pair of rigidities (D0, D2) at a fixed thickness of the plate h is enclosed between two cubic

parabolas with vortices at points 




E∗h

1 − ν2, 
E∗h3

12 (1 − ν2)




 and 





E∗h

1 − ν2, 
E∗h3

12 (1 − ν2)




 (Fig. 3). For a homogeneous plate, D2

= D0h/12, which corresponds to the straight line in Fig. 3.

Fig. 3. Range of possible values of rigidities D0, D2.
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CONCLUSIONS

1. Using a finite set of materials, one can obtain a plate with any possible rigidity values.
2. The set of possible rigidity values is only determined by the maximum and minimum values of the Young

moduli of materials E∗, E∗.
3. To make a plate with any possible set of rigidities, one can use only two materials distributed between four

layers. To obtain a design, it suffices to solve the nonlinear algebraic equation.
4. In solving the design problem, one can assume the asymmetric rigidities to be equal to zero (i.e., exclude

them from consideration), which will not limit the possible values of physical rigidities.

NOTATION

D, D∗
∗, sets of functions; D0, longitudinal rigidity; Dijkl

0 , rigidities in the plate plane; Dijkl
1 , asymmetric rigidi-

ties; D2, Dijkl
2 , flexural rigidities; E(y), Young modulus of the material as a function of the transverse coordinate y;

E∗ and E∗, maximum and minimum values of the Young modulus; h, thickness of the plate; Iµ(E), µth moment of the
function E(y); UE, set of functions; δ, auxiliary variable; ν, Prandtl coefficient. Subscripts: i, j, k, l = 1, 2; m, medium
group.
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